Seasonal dynamics of soil carbon dioxide efflux and simulated rhizosphere respiration in a beech forest.

نویسندگان

  • D Epron
  • V Le Dantec
  • E Dufrene
  • A Granier
چکیده

Respiration of the rhizosphere in a beech (Fagus sylvatica L.) forest was calculated by subtracting microbial respiration associated with organic matter decomposition from daily mean soil CO2 efflux. We used a semi-mechanistic soil organic matter model to simulate microbial respiration, which was validated against "no roots" data from trenched subplots. Rhizosphere respiration exhibited pronounced seasonal variation from 0.2 g C m(-2) day(-1) in January to 2.3 g C m(-2) day(-1) in July. Rhizosphere respiration accounted for 30 to 60% of total soil CO2 efflux, with an annual mean of 52%. The high Q10 (3.9) for in situ rhizosphere respiration was ascribed to the confounding effects of temperature and changes in root biomass and root and shoot activities. When data were normalized to the same soil temperature based on a physiologically relevant Q10 value of 2.2, the lowest values of temperature-normalized rhizosphere respiration were observed from January to March, whereas the highest value was observed in early July when fine root growth is thought to be maximal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of soil CO2 production and transport in Duke Forest using a process-based modeling approach

[1] Soil surface CO2 efflux is an important component of the carbon cycle in terrestrial ecosystems. However, our understanding of mechanistic controls of soil CO2 production and transport is greatly limited. Amultilayer process-based soil CO2 effluxmodel (PATCIS) wasused to evaluate soilCO2production and transport in theDukeForest.CO2production in the soil is the sum of root respiration and so...

متن کامل

Separating rhizosphere respiration from total soil respiration in two larch plantations in northeastern China.

The potential capacity of soil to sequester carbon in response to global warming is strongly regulated by the ratio of rhizosphere respiration to respiration by soil microbial decomposers, because of their different temperature sensitivities. To quantify relative contributions of rhizosphere respiration to total soil respiration as influenced by forest stand development, we conducted a trenchin...

متن کامل

Effect of environmental variables and stand structure on ecosystem respiration components in a Mediterranean beech forest.

The temporal variability of ecosystem respiration (RECO) has been reported to have important effects on the temporal variability of net ecosystem exchange, the net amount of carbon exchanged between an ecosystem and the atmosphere. However, our understanding of ecosystem respiration is rather limited compared with photosynthesis or gross primary productivity, particularly in Mediterranean monta...

متن کامل

Modelling carbon and water cycles in a beech forest Part II.: Validation of the main processes from organ to stand scale

A forest ecosystem model (CASTANEA) simulating the carbon balance (canopy photosynthesis, autotrophic and heterotrophic respirations, net ecosystem exchange, wood and root growth) and the water cycle (transpiration, soil evaporation, interception, drainage and soil water status) is tested with data from a young beech forest (Fagus sylvatica L.). For this purpose, the model validity is assessed ...

متن کامل

Carbon and Nitrogen Pools and Fluxes in Adjacent Mature Norway Spruce and European Beech Forests

We compared two adjacent mature forest ecosystem types (spruce vs. beech) to unravel the fate of assimilated carbon (C) and the cycling of organic and inorganic nitrogen (N) without the risk of the confounding influences of climatic and site differences when comparing different sites. The stock of C in biomass was higher (258 t·ha−1) in the older (150 years) beech stand compared to the younger ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Tree physiology

دوره 21 2-3  شماره 

صفحات  -

تاریخ انتشار 2001